Simplify the following functional expressions using boolean
Simplify the following functional expressions using boolean algebra and its identities. List the identity used at each step. a) y(xz\' + x\'z) + y\'(xz\' + x\'z) b) x(y\'z +y) + x\'(y +z\')\' c) x[y\'z + (y + z\')\'](x\'y +z)
Solution
a) y(xz\' + x\'z) + y\'(xz\' + x\'z)
Answer :->
y(xz\' + x\'z) + y\'(xz\' + x\'z) =
taking (xz\' + x\'z) common,
= (xz\' + x\'z)(y + y\')
note that (y + y\') = 1 (Complement)
so, (xz\' + x\'z)(y + y\') = (xz\' + x\'z)(1)
= (xz\' + x\'z)
Note that (x xor z) = (xz\' + x\'z),
Verify this from following truth table,
So,
y(xz\' + x\'z) + y\'(xz\' + x\'z) = (x xor z)
b) x(y\'z +y) + x\' (y +z\')\'
Answer :->
x(y\'z +y) + x\' (y +z\')\' =
put (y +z\')\' = y\'z (de Morgan’s Theorem)
= x(y\'z +y) + x\'y\'z
= xy\'z + xy + x\'y\'z = xy\'z + x\'y\'z + xy = y\'z(x + x\') + xy,
so using complement, (x + x\') = 1
= y\'z + xy
So,
x(y\'z +y) + x\' (y +z\')\' = = y\'z + xy
c) x[y\'z + (y + z\')\'](x\'y +z)
Answer :->
x[y\'z + (y + z\')\'](x\'y +z)=
note that (y + z\')\' = y\'z (de Morgan’s Theorem)
= x[y\'z + y\'z](x\'y +z)
using idempotent law,
y\'z + y\'z = y\'z
So,
x[y\'z + (y + z\')\'](x\'y +z) = x[y\'z](x\'y +z)

