Establish the identity 1 cot2 theta sin2 theta 1 Rewrite t
Establish the identity. (1 + cot^2 theta) sin^2 theta = 1 Rewrite the left side expression by expanding the product.
Solution
we have given (1+cot2(theta))*sin2(theta)=1
LHS=(1+cot2(theta))*sin2(theta)
=cosec2(theta)*sin2(theta) since cosec2(theta)-cot2(theta)=1 implies 1+cot2(theta)=cosec2(theta)
=(1/sin2(theta))*sin2(theta) since cosec2(theta)=1/sin2(theta)
=1
=RHS
(1+cot2(theta))*sin2(theta)=1
