Determine the amplitude period and phase shift for the given
     Determine the amplitude, period, and phase shift for the given function.  y = sin (2x - pi/6)  amplitude 1  period pi  phase shift  Graph the function over one period.  Indicate the x-intercepts of the graph.  (x, y) = () (smallest x-value)  (x, y) = ()  (x, y) = () (largest x-value)  Indicate the coordinates of the highest point on the graph.  (x, y) = (pi/3, 1)  Indicate the coordinates of the lowest point on the graph.  (x, y) = (5 pi/6, -1)   
  
  Solution
y = sin(2x-/6)
Phase shift = /12 to the right
X-intercept :
When y = 0 , => Sin(2x-/6)= 0 = sin0 = sin= sin2
x= /12 , x=7/12 , x= 13/12
(/12 , 0) - smallest x value
(7/12,0)
(13/12,0) largest x value

