A local political candidate conducts a telephone survey of 2
A local political candidate conducts a telephone survey of 250 voters concerning their
opinion of local issues. Seventy
-
five people believe the city needs a new library.
Construct a 95% confidence
interval for the proportion of the population that holds the same opinion
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.3          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.028982753          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.056805153          
 lower bound = p^ - z(alpha/2) * sp =   0.243194847          
 upper bound = p^ + z(alpha/2) * sp =    0.356805153          
               
 Thus, the confidence interval is              
               
 (   0.243194847   ,   0.356805153   ) [ANSWER]

