Form a fifthdegree polynomial function with real coefficient
Solution
solution
Real coefficients means complex roots come in complex conjugate pairs.
f(x)= a(x-5i)(x+5i)(x-(1-3i)(x-(1+3i)))(x+1)
f(x)= a(x^2+25i^2)(x-1+3i)(x-1-3i)(x+1)
f(x)= a(x^3+x^2-25x-25)(x^2-x-3xi-x+1+3i+3xi-3i+9)
f(x)= a(x^3+x^2-25x-25)(x^2-2x+10)
x=0
f(0)=750
750= a(-25+10)
750= -15a
a= -50
f(x)= -50(x^3+x^2-25x-25)(x^2-2x+10)
f(x)= -50(x^5-2x^4+10x^3+x^4-2x^3+10x^2-25x^3+50x^2-250x-25x^2+50x-250)
f(x)= -50(x^5-x^4-17x^3+35x^2-200x-250)
