Error Propagation Study the error propagation in the computa
Error Propagation. Study the error propagation in the computation 2 ry, as we did in class for 2 z y. Find the expression for the absolute error and the relative error in the answer fl (z)
Solution
delta=&
fl(x)=X(1+&x), fl(y)=Y(1+&y)
fl(z)=fl(fl(x)*fl(y))
= [X(1+&x)*Y(1+&y)](1+&z)
=[(X+X&x)*(Y+Y&y)](1+&z)
=[XY+XY&y+XY&x+XY&x&y](1+&x)
=XY+XY&y+XY&x+XY&x&y+XY&z+XY&y&z+XY&x&z+XY&x&y&z
=XY+XY&x+XY&y+XY&z
&z is the roun off error in making the floating point representation for z.
absolute error = fl(z)-xy = XY&x+XY&y+XY&z
