U421 V049 W338 Find the cross product U x V x WSolutionWe k
U=(4,2,-1) V=(0,4,-9), W=(3,3,8)
Find the cross product: U x ( V x W)
Solution
We know that:
Ux(VxW) = (U.W)V - (U.V)W
i.i = j.j = k.k = 1
i.j = i.k = j.k = 0
So,
U.W = (4i + 2j - k).(3i + 3j + 8k)
= 12 + 6 - 8 = 10
U.V = (4i + 2j - k).(0i + 4j - 9k)
= 0 + 8 + 9 = 17
Now
Ux(VxW) = 10*V - 17*W
= 10*(0i + 4j - 9k) - 17*(3i + 3j + 8k)
Ux(VxW) = - 51 i - 11 j - 226 k

