A circus performer who gets shot from a cannon is supposed t
A circus performer who gets shot from a cannon is supposed to land in a safety net positioned at the other end of the arena. The distance he travels is normally distributed with a mean of 185 feet and a standard deviation of 15 feet. His landing net is 50 feet long and the mid-point of the net is positioned 185 feet from the cannon. What is the probability that the performer will hit the net on a given night?
Solution
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    185 - 50/2 = 160      
 x2 = upper bound =    185 + 50/2 = 210      
 u = mean =    185      
           
 s = standard deviation =    15      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.666666667      
 z2 = upper z score = (x2 - u) / s =    1.666666667      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.047790352      
 P(z < z2) =    0.952209648      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.904419295   [ANSWER]  

