5 Newtons Method Matlab 6 points a Create a function newtonc
Solution
function [f, a, d] = newtninter(x, y, p)
 % Newton interpolation
 %
 % [f a d] = newtoninter(x, y, p)
 %
 % Input arguments ([]s are optional):
 % x (vector) of size 1xN which contains the interpolation nodes.
 % y (vector) of size 1xN which contains the function values at x
 % p (vector) of size 1xP which contains points to be interpolated.
 %
 % Output arguments ([]s are optional):
 % f (vector) of size 1xP. The result of interpolation respect to p.
 % [a] (vector) of size 1xN which is leading coefficients genereated by
 % divided difference method.
 % [d] (matrix) of size NxN (triangular) which is the result of the
 % divided difference method
 %
 % Example
 % >> x=[0,1/2,1,2,3]
 % >> y=[1,2,5, -1,-3 ];
 % >> [f a d]= newtninter(x, y, 5)
 n = length(x);
 d(:,1)=y\';
 for j=2:n
 for i=j:n
 d(i,j)= ( d(i-1,j-1)-d(i,j-1)) / (x(i-j+1)-x(i));
 end
 end
 a = diag(d)\';
Df(1,:) = repmat(1, size(p));
 c(1,:) = repmat(a(1), size(p));
 for j = 2 : n
 Df(j,:)=(p - x(j-1)) .* Df(j-1,:);
 c(j,:) = a(j) .* Df(j,:);
 end
 f=sum(c);
solution
 1.0000 0 0 0 0
 2.0000 2.0000 0 0 0
 5.0000 6.0000 4.0000 0 0
 -1.0000 -6.0000 -8.0000 -6.0000 0
 -3.0000 -2.0000 2.0000 4.0000 3.3333
f =
461

