Determine whether or not the given transformation is a linea

Determine whether or not the given transformation is a linear transformation from P_4 to P_4: L(p(x)) = (x + 1)p^n (x + 5) + 2x for p(x) elementof P_4.

Solution

The transformation L has been defined by L: P4 P4 such that L(p(x)) = (x+1)p’’(x+5)+2x

Let p1(x) = a1x4+b1x3+c1x2+d1x +e1 and p2(x) = a2x4+b2x3+c2x2+d2x +e2 be two arbitrary vectors in P4(x), where a1, b1, c1, d1, e1 and a2, b2, c2, d2, e2 are arbitrary real numbers and let k be an arbitrary scalar. Then,p1’(x)= 4a1x3+3b1x2+2c1x+d1, and p1’’(x)=12a1x2+6b1x+2c1 so that p1’’(x+5)=12a1(x+5)2+6b1(x +5)+2c1. Then L(p1(x))=(x+1)p1’’(x+5)+2x =(x+1)[12a1(x+5)2+6b1(x +5)+2c1]+2x. Similarly,L(p2(x))= (x+1)p2’’(x+5)+ 2x = (x+1)[12a2(x+5)2+6b2(x +5)+2c2]+2x.

Then L(p1(x)+p2(x) ) = (x+1)(p1’’ +p2’’)(x+5)+2x = (x+1)[12(a1+a2)(x+5)2+6(b1+b2)(x +5)+2(c1+c2)]+2x [(x+1){12a1(x+5)2+6b1(x +5)+2c1}+2x] +[(x+1){12a2(x+5)2+6b2(x +5)+2c2}+2x].

Thus L does not preserve vector addition and hence L is not a linear transformation.

 Determine whether or not the given transformation is a linear transformation from P_4 to P_4: L(p(x)) = (x + 1)p^n (x + 5) + 2x for p(x) elementof P_4.Solution

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site