Define the linear transformation L R2 R2 by Le1 3e1 e2 an

Define the linear transformation L: R^2 --> R^2 by L(e1) = 3e1 + e2 and L(e2) = -e1 + 3e2. Find L^2(e1) and L^2(e2). (YOU DONT NEED MATRICIES)

Solution

We have L2(e1) = L(L(e1 )) = L(3e1 + e2) = 3L( e1)+L( e2) = 3(3e1 + e2)+( -e1 + 3e2) = 9e1 +3e2 –e1 +3e2 =          8e1 +6e2. Further, L2(e2) = L(L(e2 )) = L(-e1 + 3e2) = -L(e1)+3L(e2 ) = -(3e1 + e2) +3(-e1 + 3e2) = -3e1 - e2 - 3e1 + 9e2 = -6e1+8e2.

Note: L, being a linear transformation, preserves vector addition and scalar multiplication.

Define the linear transformation L: R^2 --> R^2 by L(e1) = 3e1 + e2 and L(e2) = -e1 + 3e2. Find L^2(e1) and L^2(e2). (YOU DONT NEED MATRICIES)SolutionWe have

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site