Find the dimensions of the right circular cylinder with top
Find the dimensions of the right circular cylinder (with top and bottom) of volume V0 which has the smallest surface area.
Solution
V0 = pi r^2h h = V0/pi r^2 S = 2pi rh + pi r^2 S = 2pi r(V0/pi r^2) + pi r^2 S = 2V0/r + pi r^2 dS/dr = -2V0/r^2 + 2pi r = 0 2[-V0/r^2 + pir] = 0 -V0/r^2 = pir r^3 = V0/pi r = (V0/pi)^1/3..........(1) h = V0/pir^2 h = Vo/pi(Vo/pi)^2/3 h = (V0/pi)^1/3...(2)