If A 1 0 0 0 2 1 0 0 6 2 1 0 8 2 3 1 then A1 SolutionFirst

If A = [1 0 0 0 2 1 0 0 6 2 1 0 -8 2 3 1] then A^-1 =

Solution

First, let\'s add the Identity Matrix to the right of our matrix


Now, let\'s do Gauss-Jordan Elimination on our new matrix...

Add (-2 * row1) to row2


Add (-6 * row1) to row3


Add (8 * row1) to row4


Add (-2 * row2) to row3


Add (-2 * row2) to row4


Add (-3 * row3) to row4


The inverse matrix can now be found in the right 4 columns of our reduced row echelon matrix

Here is the inverse matrix:

1 0 0 0 1 0 0 0
2 1 0 0 0 1 0 0
6 2 1 0 0 0 1 0
-8 2 3 1 0 0 0 1
 If A = [1 0 0 0 2 1 0 0 6 2 1 0 -8 2 3 1] then A^-1 = SolutionFirst, let\'s add the Identity Matrix to the right of our matrix Now, let\'s do Gauss-Jordan Elim

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site