Condense log2 x log2 x 2 log2 3Solutionlog2x log2x2 log
Condense: log_2 x + log_2 (x + 2) = log_2 3
Solution
log2(x) + log2(x+2) = log2(3)
Now apply log property : logx + logy = log(x*y)
So, log2(x(x+2)) = log2(3)
x(x+2) = 3
x^2 + 2x - 3=0
x^2 + 3x -x -3 =0
(x+3)(x-1) =0
x = -3 ; x =1
x = -3 dos no satify original equation as log2(-3) DNE
So, solution : x= 1
