Condense log2 x log2 x 2 log2 3Solutionlog2x log2x2 log

Condense: log_2 x + log_2 (x + 2) = log_2 3

Solution

log2(x) + log2(x+2) = log2(3)

Now apply log property : logx + logy = log(x*y)

So, log2(x(x+2)) = log2(3)

x(x+2) = 3

x^2 + 2x - 3=0

x^2 + 3x -x -3 =0

(x+3)(x-1) =0

x = -3 ; x =1

x = -3 dos no satify original equation as log2(-3) DNE

So, solution : x= 1

 Condense: log_2 x + log_2 (x + 2) = log_2 3Solutionlog2(x) + log2(x+2) = log2(3) Now apply log property : logx + logy = log(x*y) So, log2(x(x+2)) = log2(3) x(x

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site