Linear Algebra Find an orthogonal basis for the column space
Linear Algebra
Find an orthogonal basis for the column space of the matrix A=matrixSolution
given basis is v1 = [6 2 -2 6]
v2 = [1 1 -2 8];
v3 = [-5 1 5 -7];
to make orthogonal basis,we use gram-schmid process
u1 = v1
u2 = v2 - <v2,u1> / (<u1,u1>).*u1
= [1 1 -2 8] - 60/80 * [6 2 -2 6] = [-7/2 -1/2 -1/2 7/2]
u3 = v3 - <v3,u1> /<u1,u1> u1 - <v3,u2> /<u2,u2> u2
= [-5 1 5 -7 ] - (-80/80)* [ 6 2 -2 6] - (-10) /25 [-7/2 -1/2 -1/2 7/2]
= [-5 1 5 -7 ] + [ 6 2 -2 6] + 2/5* [-7/2 -1/2 -1/2 7/2]
= [12/5 14/5 -14/5 12/5]
=
![Linear Algebra Find an orthogonal basis for the column space of the matrix A=matrixSolutiongiven basis is v1 = [6 2 -2 6] v2 = [1 1 -2 8]; v3 = [-5 1 5 -7]; to Linear Algebra Find an orthogonal basis for the column space of the matrix A=matrixSolutiongiven basis is v1 = [6 2 -2 6] v2 = [1 1 -2 8]; v3 = [-5 1 5 -7]; to](/WebImages/38/linear-algebra-find-an-orthogonal-basis-for-the-column-space-1115400-1761592354-0.webp)