Maximize z 7x 4y subject to 3x y lessthanorequalto 14 2x
     Maximize: z = 7x + 4y  subject to: 3x - y lessthanorequalto 14  2x + y greaterthanorequalto 12  x greaterthanorequalto 4  y lessthanorequalto 8  Use graphical methods to solve.  The maximum value is  (Type an integer or a simplified fraction.)  The maximum occurs at the point  (Type an ordered pair. If the maximum occurs at more than one point, type either answer. Type an integer or a simplified fraction.)   
  
  Solution
Notice the endpoints of the region are
 (4,4)
 (4,8)
 (5.2 , 1.6)
 (22/3 , 8)
The z = 7x +4y to be maximized
With (4,4), we get :
 z = 28 + 16 = 44
With (4,8), we get :
 z = 28 + 32 = 60
With (5.2,1.6), we get :
 z = 7(5.2) + 4(1.6)
 z = 42.8
With (22/3,8), we get :
 z = 7(22/3) + 4(8)
 z = 250/3 or 83.333333333333333
So, clearly :
Maximum value = 250/3 ---> FIRST ANSWER
And it occurs at (22/3 , 8) ---> SECOND ANSWER

