Find the minimal distance from the point a to the space of a

Find the minimal distance from the point a to the space of all linear combinations...

Find the minimal distance from the point a = [1 -1 -1 2] to the space of all linear combinations of the vectors e_1 = [1 -1 0 0], e_2 = [1 0 -1 0] and e_3 = [1 0 0 -1].

Solution

We first apply Gram-Schmidt orthogomalization process to the vectors e1, e2, e3, a. The desired distance will be |v4|

Let v1 = e1 = (1,-1,0,0)t

Now v2 = e2 - <e2, v1>/<e1,e1> . e1

=> v2 = (1,0,-1,0)t - 1/2(1,-1,0,0)t = (-1/2, 1/2, -1,0)t

v3 = e3 - <e3,v1>/<e1,e1>.e1 - <e3, v2>/<e2, e2> .e2

=> v3 = (1,0,0,-1)t - 1/2 (1,-1,0,0)t +1/4 (1,0,-1,0)t = (3/4,1/2,-1/4,-1)t

v4 = a - <a,v1>/<e1, e1> .e1 - <a,v2>/<e2, e2> . e2 - <a,v3>/<e3, e3> .e3

=> v4 = (1,-1,-1,2)t - (1,-1,0,0)t - 0(1,0,-1,0)t +3/4(1,0,0,-1)t

=> v4 = (3/4, 0, -1, 5/4)t

|v4| = sqrt(9/16 + 0 + 1 + 25/16) = sqrt(34/16 + 1) = sqrt(50/16) = 5sqrt(2)/4

Find the minimal distance from the point a to the space of all linear combinations... Find the minimal distance from the point a = [1 -1 -1 2] to the space of a

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site