Let T P2 rightarrow P4 be the transformation that maps a pol
Solution
(a)The image of p(t) = 6-t+t2 is p(t) –t2p(t) = 6-t+t2-t2(6-t+t2)= 6-t+t2-6t2+t3-t4 = 6-t-5t2+t3-t4.
(b) Let p(t) = a +bt+ct2 and q(t)= d +et+ft2 be 2 arbitrary elements (vectors) in P2, where a,b,c,d,e, f are arbitrary real numbers , and let k be an arbitrary scalar. Then, we have T(p(t)+q(t)) = T(a +bt+ct2+ d+et+ft2) =T((a+d)+(b+e)t+(c+f)t2)=[(a+d)+(b+e)t+(c+f)t2]-t2[(a+d)+(b+e)t+(c+f)t2] = (a+d)+t(b+e) + t2(c+f) -t2(a+d )- t3(b+e)– t4(c+f) =(a+d)+t(b+e)+t2(-a+c-d+f) -t3(b+e) –t4 (c+f). Also, T(p(t)) +T(q(t)) =(a+bt+ct2) -t2(a+bt+ct2 )+(d+et+ft2)- t (d+et+ft2)= a+bt+t2(-a+c)-bt3 –ct4+d+et+t2(-d+f)-et3 –ft4 = (a+d)+t(b+e)+ t2(-a+c-d+f)-t3(b+e) –t4(c+f) = Thus, T(p(t)+q(t))= T(p(t)+T(q(t) so that T preserves vector addition. Further, T(kp(t))=T(k(a +bt+ct2)=T(ka +kbt+kct2)= ( ka +kbt+kct2) –t2(ka +kbt+kct2)=ka+kbt+t2(-ka+kc) -kbt3 –kct4 = k[a+bt+t2(-a+c) -bt3 –ct4] = kT(p(t)). Thus, T also preserves scalar multiplication. Hence T is a linear transformation.
(c ) T(1)=1-t2=-t2+1,T(t)=t-t3= -t3+t,T(t2)=t2-t4 =-t4 +t. Then the matrix of T relative to the basis {1,t,t2} is
0
0
-1
0
-1
0
-1
0
0
0
1
1
1
0
0
Since T: P2P4 and since t3 and t4 P2, hence T(t3) and T(t4) are not defined/do not exist. Hence the matrix of T relative to the basis {1,t,t2,t3,t4} does not exist.
| 0 | 0 | -1 | 
| 0 | -1 | 0 | 
| -1 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 0 | 

