Determine the product of inertia of the beams crosssectional
Solution
Equation of shorter line is y = x+ 3
Equation of longer line is y = -x + 9
The shape can be divided into 2 smaller shapes;
a triangle between lines x = 3, y = 0 and y = -x + 9
a trapezium between lines x = 0, x = 3, y = 0 and y = x + 3
Ixy = Integral xy dA........where x and y are coordiantes of elemental area dA
For the triangle taking vertical elemental strips, x = x, y = (-x + 9)/2, dA = (-x + 9)dx
Ixy = Integral [x * (-x + 9)/2 * (-x + 9)dx].......x = 3 to 9
= Integral [(x3 - 18x2 + 81x)/2 dx]......x = 3 to 9
= [x4/8 - 3x3 + 81x2/4]....x = 3 to 9
= (94 - 34)/8 - 3(93 - 33) + 81*(92 - 32)/4
= 810 - 2106 + 1458
= 162 in4
For the trapezium taking vertical elemental strips, x = x, y = (x + 3)/2, dA = (x + 3)dx
Ixy = Integral [x * (x+3)/2 (x+3)dx ]..........x = 0 to 3
= Integral (x3 + 6x2 + 9x)/2 dx...........x = 0 to 3
= (x4/8 + x3 + 9x2/4)..........x = 0 to 3
= (34 - 0)/8 + (33 - 0) + 9*(32 - 0)/4
= 57.375 in4
Total product of inertia = 162 + 57.375 = 219.375 in4
Now we have to find centroid C.
xc = (Integral x dA) / A
yc = (Integral y dA) / A
For the triangle:
area A = 1/2*6*6 = 18 in2
xc = Integral (x *(-x + 9)dx ) / 18
xc = (-x3 /3 + 9x2/2)/18.............x = 3 to 9
xc = [(-93 + 33)/3 + 9*(92 - 32)/2] /18
xc = 5 in
yc = Integral ((-x + 9)/2 *(-x + 9)dx ) / 18
yc = Integral (x2 - 18x + 81) dx / 36.........x = 3 to 9
yc = (x3 /3 - 9x2 + 81x) /36.......x = 3 to 9
yc = [(93 - 33) /3 - 9*(92 - 32) + 81*(9-3)] / 36
yc = 2 in
For the trapezium:
area A = 1/2 *3* (3+6) = 13.5 in2
xc = Integral (x * (x + 3)dx) / 13.5.....x = 0 to 3
xc = (x3 /3 + 3x2 /2) / 13.5......x = 0 to 3
xc = (33 /3 + 3*32 /2) / 13.5
xc = 1.67 in
yc = Integral ((x + 3)/2 (x + 3)dx) / 13.5........x = 0 to 3
yc = Integral (x2 + 6x + 9) /2 / 13.5..........x = 0 to 3
yc = (x3 /3 + 3x2 + 9x) / 27..........x = 0 to 3
yc = (33 /3 + 3*32 + 9*3) / 27
yc = 2.33 in
Total area A = 18 + 13.5 = 31.5 in2
Centroid of lamina Xc = [(xc*A)triangle + (xc*A)trapezium ] / A
Xc = [(5*18) + (1.67*13.5)] / 31.5 = 3.571 in
Centroid of lamina Yc = [(yc*A)triangle + (yc*A)trapezium ] / A
Yc = [(2*18) + (2.33*13.5)] / 31.5 = 2.143 in
By parallel axis theorem, Product of inertia about centroidal axes = Ixy - Xc*Yc*A
= 219.375 - 3.571* 2.143 * 31.5
= -21.67 in4

