It a b c elementof Z n elementof N a b modn then ac bc mod
It a, b, c elementof Z, n elementof N, a b modn, then ac = bc mod n
Solution
If a b mod n then n divides (a b).
Therefore there exists m Z such that,
a b = m*n ..........................(1)
Multiply c N in equation (1),
=> ac bc = (m*c)n.
Therefore n divides (ac bc) and hence ac bc (mod n).
