Given m 2 5i determine the value of m4 and give your answe
Given m = -2 + 5i determine the value of m^4 and give your answer in both trigonometric and standard forms for complex numbers. Find all complex solutions of x^6 + 64 = 0 Write your answers in trigonometric form using degrees.
Solution
10)m=-2+5i
r=((-2)2+52)=29
m=29((-2/29)+(5/29)i)
m=29((-2/29)+(5/29)i)
=>m=29(cos(111.8o)+sin(111.8o)i)
=>m4=(29(cos(111.8o)+sin(111.8o)i))4
=>m4=292(cos(111.8*4)o+sin(111.8*4)oi)
=>m4=841(cos(447.21)o+sin(447.21)oi)
=>m4=841(cos(87.21)o+sin(87.21)oi)
=>m4=841(0.04875+0.99881i)
=>m4=41 +840i
m4=41 +840i,m4=(841cos(87.21)o+841sin(87.21)oi)
--------------------------------
11)x6+64=0
x6=-64
x6=64(-1+0i)
x6=64ei,x6=64ei3,x6=64ei5,x6=64ei7,x6=64ei9,x6=64ei11
x=641/6ei/6,x=641/6ei3/6,x=641/6ei5/6,x=641/6ei7/6,x=641/6ei9/6,x=641/6ei11/6
x=((2cos30o)+(2sin30o)i),x=((2cos90o)+(2sin90o)i),x=((2cos150o)+(2sin150o)i),x=((2cos210o)+(2sin210o)i),x=((2cos270o)+(2sin270o)i),x=((2cos330o)+(2sin330o)i)
