The Schwarz inequality upsilon middot w lessthanorequalto up
The Schwarz inequality |upsilon middot w| lessthanorequalto ||upsilon|| ||w|| by algebra instead of trigonometry: (a) Multiply out both sides of (upsilon_1 w_1 + upsilon_2 w_2)^2 lessthanorequalto (upsilon_1^2 + upsilon_2^2)(w_1^2 + w_2^2). (b) Show that the difference between those two sides equals (upsilon_1 w_2 - upsilon_2 w_1)^2. This cannot be negative since it is a square-so the inequality is true.
Solution
We have (v1w1 +v2 w2)2 = v12w12+v22w22+2v1w1v2w2 ; and (v12+v22)(w12+w22) = v12w12+v22w22+v12w22 + v22w12 so that (v12+v22)(w12+w22) - (v1w1 +v2 w2)2 = v12w12+v22w22+v12w22 + v22w12 – (v12w12+v22w22+2v1w1v2w2) = v12w22 + v22w12 -2v1w1v2w2 = (v1 w2 – v2 w1)2 . Now, (v1 w2 – v2 w1)2 being a square, cannot be negative. Therefore, (v12+v22)(w12+w22)-(v1w1+v2 w2)2 0 or, (v12+v22)(w12+w22) (v1w1 +v2 w2)2 or, (v1w1 +v2 w2)2 (v12+v22)(w12+w22)
