Let V be an inner product space of dimension n Let S be an o
     Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that  (u, v) = [u]_S middot [v]_S  for all u, v elementof V. Recall, [u]_S elementof R^n denotes the coordinate vector of u.![Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that (u, v) = [u]_S middot [v]_S for all u, v elementof V. Recall, [u  Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that (u, v) = [u]_S middot [v]_S for all u, v elementof V. Recall, [u](/WebImages/38/let-v-be-an-inner-product-space-of-dimension-n-let-s-be-an-o-1117079-1761593591-0.webp) 
  
  Solution
Let S = {e1,e2,…,en} be an orthonormal basis for V and let u=a1e1+a2e2+…+an en and v = b1e1+b2e2 +…+bnen where ai s and bj s are scalars. Then [u]s = (a1,a2, …,an) and [v]s = (b1,b2, …,bn). Further, <u,v>= (a1e1+a2e2+…+an en).( b1e1+b2e2 +…+bnen) = a1b1 +a2b2 +…+anbn as ei2 = 1 for 1 I n. Also, [u]s . [v]s = (a1,a2, …,an) . ((b1,b2, …,bn) = a1b1 +a2b2 +…+anbn . Hence, < u, v> = [u]s . [v]s
![Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that (u, v) = [u]_S middot [v]_S for all u, v elementof V. Recall, [u  Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that (u, v) = [u]_S middot [v]_S for all u, v elementof V. Recall, [u](/WebImages/38/let-v-be-an-inner-product-space-of-dimension-n-let-s-be-an-o-1117079-1761593591-0.webp)
