Let V be an inner product space of dimension n Let S be an o

Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that (u, v) = [u]_S middot [v]_S for all u, v elementof V. Recall, [u]_S elementof R^n denotes the coordinate vector of u.

Solution

Let S = {e1,e2,…,en} be an orthonormal basis for V and let u=a1e1+a2e2+…+an en and v = b1e1+b2e2 +…+bnen where ai s and bj s are scalars. Then [u]s = (a1,a2, …,an) and [v]s = (b1,b2, …,bn). Further, <u,v>= (a1e1+a2e2+…+an en).( b1e1+b2e2 +…+bnen) = a1b1 +a2b2 +…+anbn as ei2 = 1 for 1 I n. Also, [u]s . [v]s = (a1,a2, …,an) . ((b1,b2, …,bn) = a1b1 +a2b2 +…+anbn . Hence, < u, v> = [u]s . [v]s

 Let V be an inner product space, of dimension n. Let S be an orthonormal basis of V. Show that (u, v) = [u]_S middot [v]_S for all u, v elementof V. Recall, [u

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site