The radius r of a sphere can be calculated from its volume V

The radius, r, of a sphere can be calculated from its volume, V, by: r = 3 squareroot 3/4 V/pi The surface area of a sphere, S, is given by: S = 4 pi r^2 Determine the radius and surface area of spheres with volumes of 4,000, 3, 500, 3,000, 2, 500, 2,000, 1, 500 and 1,000 in^3. Display the results in a three-column table where the values of r, V, and S are displayed in the first, second, and third columns, respectively. The values of r and S that are displayed in the table should be rounded to the nearest tenth of an inch.

Solution

v=[4000,3500,3000,2500,2000,1500,1000];
b=zeros(7,3);   %array for storing r,v,s values
for i=1:7
    t=(3*v(i))/(4*pi);
    r=nthroot(t,3);     %cube root function
    b(i,1)=r;
    b(i,2)=v(i);
    b(i,3)=2*pi*r*r;
end
clc;
disp(b);   %printing actual values
disp(floor(b)); %nearest values using floor values
disp(ceil(b)); %nearest values using ceil values

output:-

1.0e+003 *

    0.0098    4.0000    0.6093
    0.0094    3.5000    0.5574
    0.0089    3.0000    0.5030
    0.0084    2.5000    0.4454
    0.0078    2.0000    0.3838
    0.0071    1.5000    0.3168
    0.0062    1.0000    0.2418

           9        4000         609
           9        3500         557
           8        3000         502
           8        2500         445
           7        2000         383
           7        1500         316
           6        1000         241

          10        4000         610
          10        3500         558
           9        3000         503
           9        2500         446
           8        2000         384
           8        1500         317
           7        1000         242

>>

 The radius, r, of a sphere can be calculated from its volume, V, by: r = 3 squareroot 3/4 V/pi The surface area of a sphere, S, is given by: S = 4 pi r^2 Deter

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site