Concentration of FeNO33 in 010 M HNO3 solution 0002 M Concen
Concentration of Fe(NO3)3 in 0.10 M HNO3 solution
0.002 M
Concentration of NaSCN in 0.1o M HNO3 solution
0.002 M
Volume of Fe(NO3)3 solution
5.00 mL
Volume of NaSCN solution
2.00 mL
Absorbance
0.346
Equation of the trendline in their graph
y = 2278.6x + 0.0121
1. Calculate the initial [Fe3+] in the test tube.
2. Calculate the initial [SCN-] in the test tube.
3. Calculate the equilibrium [Fe3+] in the test tube.
4.Calculate the equilibrium [SCN-] in the test tube.
Solution
Use the dilution equation:
M1*V1 = M2*V2
where M1 = initial concentration; V1 = volume of stock solution taken; M2 = final concentration and V2 = final volume of the solution.
The total volume of the solution is (5.00 + 2.00) mL = 7.00 mL.
1) Plug in values and obtain
(5.00 mL)*(0.002 M) = [Fe3+]init*(7.00 mL)
====> [Fe3+]init = (5.00*0.002 M)/(7.00) = 0.00143 M (ans).
2) Plug in values and obtain
(2.00 mL)*(0.002 M) = [SCN-]init*(7.00 mL)
====> [SCN-]init = (2.00*0.002 M)/(7.00) = 0.00057 M (ans).
3) Use the regression equation to find out the concentration of [Fe(SCN)]2+ at equilibrium. Put y = 0.346 in the regression equation and obtain
0.346 = 2278.6*[Fe(SCN)2+]eq + 0.0121
=====> 2278.6*[Fe(SCN)2+]eq = 0.346 – 0.0121 = 0.3339
=====> [Fe(SCN)2+]eq = 0.3339/2278.6 = 0.00015 M.
[Fe3+]eq = [Fe3+]init – [Fe(SCN)2+]eq = 0.00143 M – 0.00015 M = 0.00128 M (ans).
4) [SCN-]eq = [SCN-]init – [Fe(SCN)2+]eq = 0.00057 M – 0.00015 M = 0.00042 M (ans).


