Verify the following identity of Lagrange v times w middot v

Verify the following identity of Lagrange: (v times w) middot (v times w) + (v middot w)^2 =|v||^2| w|^2

Solution

We know that (v x w) = |v||w| sin where is the angle between the vectors u and v. Also, (v.w)= |v||w|cos . Then (v x w).(v x w) + (v.w)2 =|v|2|w|2sin2+|v|2|w|2cos2 =|v|2|w|2( sin2 + cos2)= =|v|2|w|2 (as sin2 + cos2 =1)

 Verify the following identity of Lagrange: (v times w) middot (v times w) + (v middot w)^2 =|v||^2| w|^2SolutionWe know that (v x w) = |v||w| sin where is the

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site