Let a b c n be integers Prove that if a n and b n with gcd
Let a, b, c, n be integers. Prove that if a | n and b | n with gcd(a, b) = 1, then ab | n. If a | bc and gcd(a, b) = 1, then a | c.
Solution
(a)
a|n means : n=ga
b|n means: n=fb
gcd(a,b)=1 means there exist integers:x,y so that
ax+by=1
Multiplying by: n gives:
nax+nby=n
Using: n=ga=fb gives
(fb)ax+(ga)by=n
ab(fx+gy)=n
Hence, ab|n
(b)
a|bc means:
bc=ar for some integer ,r
gcd(a,b)=1 so there exist integers, x,y so that:
ax+by=1
Multiplying by c gives:
acx+bcy=c
acx+ary=c (Using bc=ar)
a(cx+ry)=c
Hence, a|c
