Find z1z2 and z1 lz2 for the following pair of complex numbe
Find z_1z_2 and z_1 lz_2 for the following pair of complex numbers, using trigonometric form. z_1 = squareroot 3 + i, z_2 = 5 + 5 i squareroot 3 z_1z_2 = (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Type your answer in the form a + b i.) z_1lz_2 = (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Type your answer in the form a + b i.)
Solution
z1=3 +i ,z2=5+ 5i3
z1=2*((3/2) +i(1/2)) ,z2=5*(1+ i3)
z1=2*((3/2) +i(1/2)) ,z2=10*((1/2)+ i(3/2))
z1=2*(cos30o +i sin30o) ,z2=10*(cos60o +i sin60o)
z1z2=2*(cos30o +i sin30o) *10*(cos60o +i sin60o)
z1z2=20*(cos(30+60)o +i sin(30+60)o)
z1z2=20*(cos(90)o +i sin(90)o)
z1z2=20*(0 +i*1)
z1z2=20i
---------------------------------------
z1/z2=2*(cos30o +i sin30o)/10*(cos60o +i sin60o)
z1/z2=(2/10)*(cos(30-60)o +i sin(30-60)o)
z1/z2=(2/10)*(cos(-30)o +i sin(-30)o)
z1/z2=(2/10)*((3/2) -i(1/2))
z1/z2=((3/10) -i(1/10))
