Let G be a group and a b elementof G Show that a and a1 hav
Solution
(i) Let the order of a be n. Then an = e. Further, e = (aa-1)n = an(a-1)n = e (a-1)n = (a-1)n . Therefore, the order of a-1 n. Let the order od a-1 be m with m < n. Then (a-1)m = e . Also, e = em = (a-1a)m = (a-1)m am = eam = am . Thus, am = e. However, this is a contradiction. Hence m = n i.e. the order of a-1 is same as the order of a.
(ii) Let the order of a be n. Then (bab-1 )n = bab-1 · bab-1 · bab1 · ... · bab-1 ( n times)
= ba · (b-1 b) · a · (b-1 b) · a · (b-1 b) · ... · (b-1 b) · ab-1 = ba · e · a · e · a · e · ... · e · ab-1 = ban b 1 = beb-1 = bb-1 = e.Therefore, the order of bab-1 n. Let us suppose that the order of bab-1 is m and that m < n. Then, we must have e = (bab-1 )m = bamb-1 .Therefore, b-1 eb= b-1 bam b-1 b = (b-1b)am (b-1b) or, e = am . This implies that the order of a is less than n, which is a contradiction. Hence the order of bab-1 is n.
(iii) Let the order of ab = n. Then (ab)n =e where e is the identity. Then a-1(ab)n = a-1. Then a-1(ab)n a = a-1 a = e. Further, a-1(ab)n a = a-1 (ababab…)a = a-1a(ba)n = (ba)n =e . Therefore, the order of ba is less than or equal to the order of ab. Let the order of ba be m with m < n. Then (ab)m = abab….ab(m times) = abab….abe = abab….ab(aa-1) = a(ba)m a-1 = aea-1 = aa-1 = e . This is a contradiction. Hence m = n i.e. the order of ba is same as the order of ab.
