Let G be group and a elementof G Show that a a1SolutionLet
     Let G be group and a elementof G. Show that (a) = (a^-1). 
  
  Solution
Let G be a group, and let a  G. .
 If x  C(a), ax = xa. Then x = a-1ax = a-1xa and xa-1 = a-1xaa-1 = a-1x.
 Thus x  C(a-1). Therefore C(a)  C(a-1). By applying the same idea for a-1,
 we have C(a-1)  C((a-1)-1) = C(a). Thus C(a) = C(a-1).

