Let G be group and a elementof G Show that a a1SolutionLet

Let G be group and a elementof G. Show that (a) = (a^-1).

Solution

Let G be a group, and let a G. .
If x C(a), ax = xa. Then x = a-1ax = a-1xa and xa-1 = a-1xaa-1 = a-1x.
Thus x C(a-1). Therefore C(a) C(a-1). By applying the same idea for a-1,
we have C(a-1) C((a-1)-1) = C(a). Thus C(a) = C(a-1).

 Let G be group and a elementof G. Show that (a) = (a^-1).SolutionLet G be a group, and let a G. . If x C(a), ax = xa. Then x = a-1ax = a-1xa and xa-1 = a-1xaa-

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site