Use the Laplace transform to solve the given initial value p
Solution
5 )
a) y\"+ 3y\'+2y=0 , y(0)=0, y\'(0)=1
r^2 + 3r + 2 = 0
(r + 2)(r + 1) = 0
r + 2 = 0, r + 1 = 0
 r = - 2, r = -1
 
 general solution
 
 y = ce^(x) + ce^(2x)
 
 when y(0) = 0,
 
 0 = ce^(0) + ce^[2(0)]
 0 = c + c-------------- eq1
 
 when y\'(0) = 1
 
 y = ce^(x) + ce^(2x)
 y\' = ce^(x) + 2ce^(2x)
 1 = ce^(0) + 2ce^[2(0)]
 1 = c + 2c ------------------------ eq2
 
 solving for c and c bu elimination
 
 0 = c + c
 -[1 = c + 2c]
 --------------------
 - 1 = - c
 c = 1
 
 solving for c from eq1
 
 0 = c + c
 0 = c + 1
 c = - 1
 
 so
 
 y = ce^(x) + ce^(2x)
 y = - e^(x) + e^(2x)
 y = e^(x)[e^(x) - 1] ---------------- Answer
b) for equation y\'\' + 2y\' + 5y = 0
Applying L to both sides:
[s^2 Y(s) - s * 2 - (-1)] + 2 [sY(s) - 2] + 5 Y(s) = 0
 
 Solve for Y(s):
(s^2 + 2s + 5) Y(s) = 2s + 3
 Y(s) = (2s + 3)/(s^2 + 2s + 5).
 
 Complete the square:
Y(s) = (2s + 3) / [(s + 1)^2 + 4]
 = (2(s + 1) + 1) / [(s + 1)^2 + 4]
 = 2(s + 1)/[(s + 1)^2 + 4] + 1/[(s + 1)^2 + 4]
 
 Inverting term by term yields
 y(t) = e^(-t) [2 cos(2t) + (1/2) sin(2t)].


