Find the general solution of the given differential equation
Solution
a)
y\'\'\'+9y\'\'+27y\'+27y=0
Linear, constant-coefficient. Assume solution of form y = emx. This gives us the equation
m3+9m2+27m+27=0
(m+3)3=0 [(a+b)3=a3+b3+3ab(a+b)]
so
m=-3,-3,-3
So the general solution is
y=C1em1x+C2em2x+C3em3x
by substitutiion we get
y=C1e-3x+C2e-3x+C3e-3x
----------------
b)
y\'\'\'+4y\'\'-3y\'-18y=0
Linear, constant-coefficient. Assume solution of form y = emx. This gives us the equation
m3+4m2-3m-18=0
(m-2)(m+3)(m+3)=0
So
m=2 ,-3,-3
So the general solution is
y=C1em1x+C2em2x+C3em3x
by substitutiion we get
y=C1e2x+C2e-3x+C3e-3x
---------------------
c)
y\'\'\'\'+10y\'\'\'+25y\'\'=0
Linear, constant-coefficient. Assume solution of form y = emx. This gives us the equation
m4+10m3+25m2=0
m2(m+5)(m+5)=0
So
m=0,0,-5 & -5
So the general solution is
y=C1em1x+C2em2x+C3em3x+C4em4x
by substitutiion we get
y=C1e(0)x+C2e(0)x+C3e-5x+C4e-5x
y=C1+C2+C3e-5x+C4e-5x

