Using MATLAB Solve for X1 X2 X3 1In MATLAB using the inverse
Using MATLAB
Solve for X1, X2, X3
1)In MATLAB (using the inverse of the A Matrix)
2)In MATLAB (using the \"\\\" command)
Now rewrite as AX=B
Given the system of linear equations 4x1 8x3 54 2x1 7x2 3x3 116 1x1 4x2 9x3 80Solution
Let X=[x1,x2,x3]
1.)
Matlab code :
A=[4 1 8;2 7 3;1 4 9];
 B=[54 116 80]\';
 X=inv(A)*B
Output :
X =
6.0000
 14.0000
 2.0000
2.)
Matlab code :
A=[4 1 8;2 7 3;1 4 9];
 B=[54 116 80]\';
 X=A\\B
Output :
X =
6.0000
 14.0000
 2.0000
a.)
Matlab code to create U :
A=[4 1 8;2 7 3;1 4 9];
 B=[54 116 80]\';
a=[A,B];
 [m,n]=size(a);
 for i=1:n-2
 for j=i+1:m
 d=(a(j,i)/a(i,i));
 for k=1:n
 a(j,k)=a(j,k)-d*a(i,k);
 end
 end
 end
 U=a(:,1:n-1)
 Y=a(:,n)
Output:
U =
4.0000 1.0000 8.0000
 0 6.5000 -1.0000
 0 0.0000 7.5769
Y =
54.0000
 89.0000
 15.1538
b.)
Using backward substitution, we get
7.5769 x3= 15.1538 gives x3=2
6.5000x2 -1.0000x3=89.0000 gives us x2=14
4.0000x1 +1.0000 x2 + 8.0000x3=54.0000 gives us x1=6
c.)
Matlab code:
[L, U]=lu(A)
Y=L\\B
Output:
L =
1.0000 0 0
 0.5000 1.0000 0
 0.2500 0.5769 1.0000
 U =
4.0000 1.0000 8.0000
 0 6.5000 -1.0000
 0 0 7.5769
This is the same U that we got in part a.)
Y=
54.0000
 89.0000
 15.1538
d.)
Matlab code:
X=U\\Y
Output :
X =
6.0000
 14.0000
 2.0000



