Assume that the random variabble x is normally distributed w
Assume that the random variabble x is normally distributed with mean =50 and standard deviation = 10. Compute the probability P(38 < x<_ 55)
Solution
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    38      
 x2 = upper bound =    55      
 u = mean =    50      
           
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.2      
 z2 = upper z score = (x2 - u) / s =    0.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.11506967      
 P(z < z2) =    0.691462461      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.576392791   [ANSWER]  

