solve yy y2 using the substitution uy and UdudyySolutionyy

solve yy\'\' = (y\')^2 using the substitution u=y\' and U(du/dy)=y\'\'

Solution

yy\'\' = (y\')^2

Substituting u=y\' and u(du/dy)=y\'\',

y((u(du/dy)) = u2

y ( du/dy ) = u

du/u = dy/y

Integrating both the sides of the above equation, we get

ln|u| = ln|y| + c1 which gives u =c2y

Resubstituting u = dy/dx, we get

dy/dx = c2y

dy/y = c2 dx

Integrating both the sides of the above equation, we get

ln|y| = c2 x + c3 or y = c4 ec2x

solve yy\'\' = (y\')^2 using the substitution u=y\' and U(du/dy)=y\'\'Solutionyy\'\' = (y\')^2 Substituting u=y\' and u(du/dy)=y\'\', y((u(du/dy)) = u2 y ( du/d

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site