Let a and b be integers If d sa tb where st are integers f
Let a and b be integers. If d = sa + tb, where s,t are integers, find infinitely many pairs of integers (s_k, t_k) with d = (s_k)a + (t_k)b
Solution
if d = sa + tb we have to find the infinitely many pairs of (sk , tk) with d = (sk)a + (tk)b
we have to find sk and tk such that (sk)a + (tk)b = d = sa + tb
we can assume that,
sk = s + kb
tk = t - ka
so,
(sk)a + (tk)b = (s + kb)a + (t - ka)b
(sk)a + (tk)b = sa + kba + bt - kba
(sk)a + (tk)b = sa + bt
as given we have sa + bt = d so,
(sk)a + (tk)b = d
so we can say that,
(sk , tk) = (s+kb , t-ka)
