Let a and b be integers If d sa tb where st are integers f

Let a and b be integers. If d = sa + tb, where s,t are integers, find infinitely many pairs of integers (s_k, t_k) with d = (s_k)a + (t_k)b

Solution

if d = sa + tb we have to find the infinitely many pairs of (sk , tk) with d = (sk)a + (tk)b

we have to find sk and tk such that (sk)a + (tk)b = d = sa + tb

we can assume that,

sk = s + kb

tk = t - ka

so,

(sk)a + (tk)b = (s + kb)a + (t - ka)b

(sk)a + (tk)b = sa + kba + bt - kba

(sk)a + (tk)b = sa + bt

as given we have sa + bt = d so,

(sk)a + (tk)b = d

so we can say that,

(sk , tk) = (s+kb , t-ka)

Let a and b be integers. If d = sa + tb, where s,t are integers, find infinitely many pairs of integers (s_k, t_k) with d = (s_k)a + (t_k)bSolutionif d = sa + t

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site