Explain why the eigenvalues of triangular and diagonal matri

Explain why the eigenvalues of triangular and diagonal matrices T = (t_11 t_12 ... t_1n 0 t_22 ... t_2n 0 0 ... t_nn) and D = (lambda_1 0 ... 0 0 lambda_2 ... 0 0 0 ... lambda_n) are simply the diagonal entries-the t_ii\'s and lambda_i\'s.

Solution

to find the eigen values (k) of the matrix \'T \" consider the determinant

|T - kI | = | t11 -k   t12 ----- t1n

0 t22-k ---- t2n

-------

------------------- -tnn-k |

expanding along the the 1 st column we get

   ( t11 -k) | t22 -k -------- t2n

0 t33-k --- --------t3n

   -----

   tnn-k| once again expanding along the 1 st column

   |T-kI | = (t11-k) ( t22-k) | t33-k ------

   ----

   --------- tnn-k|

when we proceed like this after n th step we get the charecteristic eqn as

   (t11-k) (t22-k) ----(tnn-k) =0

and the factors equal to 0 will give the eigen values as k = t11 , t22 ----- tnn   (only the main diogonal elements

  B .   

let k be the eigen values then the charateristic eqn is given by

   |D-kI |= 0

   | t1-k 0 -- 0

   0 t2-k -- 0

   ----- 0

   0 ------------ tn-k | =0

   each time expanding along the 1 st column we get ( t1-k) (t2-k) ---(tn-k) =0 = > k= t1,t2....tn  the diogonal elements

 Explain why the eigenvalues of triangular and diagonal matrices T = (t_11 t_12 ... t_1n 0 t_22 ... t_2n 0 0 ... t_nn) and D = (lambda_1 0 ... 0 0 lambda_2 ...

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site