Using the Extended Euclidean Algorithm showing each step as
Using the Extended Euclidean Algorithm (showing each step as you go), compute gcd(2340, 384) and find the integers s and t such that 2340 · s + 384 · t = gcd(2340, 384).
Solution
2340=6*384+36 , 36 = 2340-6*384
384=36*11-12 , 12 = 36*11-384=11*2340-67*384
36=3*12+0
Hence
12 =11*2340-67*384
and gcd(2340,384)=12

