Find an equation of the tangent to the curve at the given po
Find an equation of the tangent to the curve at the given point
x=cos(t)+cos(2t)
y=sin(t)+sin(2t)
(-1,1)
y=?
x=cos(t)+cos(2t)
y=sin(t)+sin(2t)
(-1,1)
y=?
Solution
The point is (-1,1) so t = /2, we have:
y\' = (dy/dt)/(dx/dt) = (cos(t) + 2cos(2t))/(-sin(t)-2sin(2t)) =
cos(/2)+2cos() / (-sin(/2)-2sin()) = (0-2)/(-1-0) = 2
So the tangent line equation is:
y - 1 = 2(x - (-1)) = 2x + 2
y = 2x + 3
