The two wires are tied to the pole at B and D Find the momen
Solution
Line of action of the force F1 = 132 N is DE and it given by
DE = AE - AD = (2150 i + 1000 k) - (1800 j) mm
===> DE = (2150 i - 1800 j + 1000 k) mm
Thus force F1 = 132 N can be written as
F1 = 132 / {21502 + (-1800)2 + 10002} * {2150 i - 1800 j + 1000 k} N
===> F1 = 132 / 297 * {2150 i - 1800 j + 1000 k} N
Similarly for the force F2 = 185 N, the line of action is BC which is given by
BC = AC - AB = {1860 i - 2300 j - 560 k} mm
Force F2 = F2 * BC / BC = 185 / {18602 + (-2300)2 + (-560)2} * {1860 i - 2300 j - 560 k} N
===> F2 = 185 / 3010.515 * {1860 i - 2300 j - 560 k} N
Force F3 = - 540 i N
Resultant moment of all forces about point A is
MA = AD x F1 + AB x F2 + AB x F3
===> MA = 1.8 j x [132 / 297 * {2150 i - 1800 j + 1000 k}] + 2.3 j x [185 / 3010.515 * {1860 i - 2300 j - 560 k}] + {2.3 j x -540 i} Nm
===> MA = {79.812 i - 171.596 k - 79.15 i - 262.889 k + 1242 k} Nm
===> MA = {0.663 i + 807.516 k} Nm

