Find the values of the trigonometric functions of t from the
Solution
given cot(theta) = - 5/8
cot(theta) = cos(theta) / sin(theta) , cos(theta) > 0, sin(theta) has to be < 0
cot(theta) = adjacent side / opposite side
by pythogorous theorem
hyp^2 = adj^2 + opp^2
hyp^2 = (8)^2 + ( -5)^2 ==> 64 + 25
hyp= sqrt(89)
sin(theta) = opp / hyp ==> - 5 / sqrt(89)
cos(theta) = adj / hyp ==> 8 / sqrt(89)
tan(theta) = opp / adj =sin(theta) /cos(theta) = 1/cot(theta) ==> - 8 / 5
csc(theta) = 1/sin(theta)= - sqrt(89) / 5
sec(theta) = 1/cos(theta) = sqrt(89) / 8
====
csc(t) = 7 , cos(theta) < 0
sin(t) = 1/csc(t) ==> 1/7 ==> opp / hyp
hyp^2 = adj^2 + opp^2
7^2 = adj^2 + 1^2
adj^2 = 49 - 1
adj= + / - sqrt(48)
cos(theta) = adj / hyp = - sqrt(48) / 7
sec(theta) = 1/cos(theta) = - 7 / sqrt(48)
tan(theta) = sin(theta) /cos(theta) = - 1 / sqrt(48)
cot(theta) = 1/tan(theta) = - sqrt(48) / 1
