First find the bigOh running time of inside in terms of inpu
Solution
private static double[] inside(double[] a,double[] b)//sizes of na and nb of lists
 {
    double[] c=new double[a.length];//1 unit time
    int i=0,j=0;   //1 unit time
    for(int k=0;k<c.length;k++)   //na times
    {
        if(i<a.length){               //na times
            if(j<b.length){           //na times  
                if(a[i]<=b[j])       //na time extreme for all(upper bound)
                    c[k]=a[i];   //na time
                else
                    c[k]=b[j];   //na time
            }else
            {
                c[k]=a[i];       //na time
                i++;           //na time
            }
        }else {
            if(j<b.length){           //na time
                c[k]=b[j];       // na time
                j++;           // na time
            }
        }
    }
    return c;   //1 unit
 }
the bid-Oh running time of inside method is
 =>11na+3
 =>O(na) //(in upper bound time complexity constants will be negligible)
for outside method running time is
public static double[] outside(double[] list)
 {
    int x=list.length;   //1 unit
    if(x<=1) return list;   //1 unit
    double[] a=new double[x/2];   //1 unit
    double[] b=new double[x-x/2];   //1 unit
    for(int i=0;i<a.length;i++)   // n/2 unit
    {
        a[i]=list[i];       //n/2
    }
    for(int i=0;i<b.length;i++)   //n/2
    {
        b[i]=list[i+x/2];   //n/2
    }
    return outside(inside(a,b));   //na log n
 }
the total running time of outer method is
 =>4(n/2)+4+nalog(n)
 =>O(nalog(n))
![First, find the big-Oh running time of inside, in terms of input sizes n_a and n_b. private static double[] inside(double[] a, double[] b) {double[] c = new do  First, find the big-Oh running time of inside, in terms of input sizes n_a and n_b. private static double[] inside(double[] a, double[] b) {double[] c = new do](/WebImages/39/first-find-the-bigoh-running-time-of-inside-in-terms-of-inpu-1120535-1761596212-0.webp)
