First find the bigOh running time of inside in terms of inpu
Solution
private static double[] inside(double[] a,double[] b)//sizes of na and nb of lists
{
double[] c=new double[a.length];//1 unit time
int i=0,j=0; //1 unit time
for(int k=0;k<c.length;k++) //na times
{
if(i<a.length){ //na times
if(j<b.length){ //na times
if(a[i]<=b[j]) //na time extreme for all(upper bound)
c[k]=a[i]; //na time
else
c[k]=b[j]; //na time
}else
{
c[k]=a[i]; //na time
i++; //na time
}
}else {
if(j<b.length){ //na time
c[k]=b[j]; // na time
j++; // na time
}
}
}
return c; //1 unit
}
the bid-Oh running time of inside method is
=>11na+3
=>O(na) //(in upper bound time complexity constants will be negligible)
for outside method running time is
public static double[] outside(double[] list)
{
int x=list.length; //1 unit
if(x<=1) return list; //1 unit
double[] a=new double[x/2]; //1 unit
double[] b=new double[x-x/2]; //1 unit
for(int i=0;i<a.length;i++) // n/2 unit
{
a[i]=list[i]; //n/2
}
for(int i=0;i<b.length;i++) //n/2
{
b[i]=list[i+x/2]; //n/2
}
return outside(inside(a,b)); //na log n
}
the total running time of outer method is
=>4(n/2)+4+nalog(n)
=>O(nalog(n))
![First, find the big-Oh running time of inside, in terms of input sizes n_a and n_b. private static double[] inside(double[] a, double[] b) {double[] c = new do First, find the big-Oh running time of inside, in terms of input sizes n_a and n_b. private static double[] inside(double[] a, double[] b) {double[] c = new do](/WebImages/39/first-find-the-bigoh-running-time-of-inside-in-terms-of-inpu-1120535-1761596212-0.webp)