Find the solution of y2y15y9e4t with y06 and y06SolutionLet

Find the solution of y+2y15y=9e4t with y(0)=6 and y(0)=6.

Solution

Let  y = e^(mx) y(0)=6 =>6=e^mx
y\' = m * e^(mx) =>m*6=6 =>m=1
y\'\' = m^2 * e^(mx) =e^x

y\'\' + 2y\' - 15y =9e^4t
e^x+2e^x-15e^x=9e^4t

=>-13e^x=9e^4t

=>e^x=-9/13(e^4t)

taking log on both sides

x=-log(9/13)+4t

x=log(13/9)+4t

Find the solution of y+2y15y=9e4t with y(0)=6 and y(0)=6.SolutionLet y = e^(mx) y(0)=6 =>6=e^mx y\' = m * e^(mx) =>m*6=6 =>m=1 y\'\' = m^2 * e^(mx) =e^

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site