Define T Prightarrow p by Tpx pxxpx Consider the linear fun
Solution
Ans-
Suppose f : R R
 n ® p
 be a linear function. Let e e e
 1 2
 , ,K,
 n
 be the coordinate
 vectors for R
 n
 . For any x R
 n
 Î , we have x = x e + x e + + x e
 1 1 2 2 K n n
 . Thus
 f f x x x x f x f x f
 n n n n
 ( x) = ( e + e + + e ) = (e ) + (e )+ + (e )
 1 1 2 2 K 1 1 2 2 K .
 Meditate on this; it says that a linear function is entirely determined by its values
 f f f
 n
 (e ) , (e ) , , (e )
 1 2 K . Specifically, suppose
 f a a a
 f a a a
 f a a a
 p
 p
 n n n pn
 ( ) ( , , , ) ,
 ( ) ( , , , ) ,
 ( ) ( , , , ) .
 e
 e
 e
 1 11 21 1
 2 12 22 2
 1 2
 =
 =
 =
 K
 K
 M
 K
 Then
 f a x a x a x a x a x a x
 a x a x a x
 n n n n
 p p pn n
 ( ) ( , , ,
 ) .
 x = + + + + + +
 + + +
 11 1 12 2 1 21 1 22 2 2
 1 1 2 2
 K K K
 K
 The numbers a
 ij
 thus tell us everything about the linear function f. . To avoid labeling
 these numbers, we arrange them in a rectangular array, called a matrix:6.2
 a a a
 a a a
 a a a
 n
 n
 p p pn
 11 12 1
 21 22 2
 1 2
 K
 K
 M M
 K
 é
 ë
 ù
 û
 The matrix is said to represent the linear function f.
 For example, suppose f : R R
 2 ® 3
 is given by the receipt
 f ( x ,x ) ( x x , x x , x x )
 1 2 = 2 1 - 2 1 + 5 2 3 1 - 2 2
 .
 Then f (e ) f ( , ) ( , , )
 1 = 1 0 = 2 1 3 , and f (e ) f ( , ) ( , , )
 2 = 0 1 = -1 5 -2 . The matrix representing f
 is thus
 2
 1
 3
 1
 5
 2
 -
 -
 é
 ë
 ù
 û
 Given the matrix of a linear function, we can use the matrix to compute f ( x) for
 any x. This calculation is systematized by introducing an arithmetic of matrices. First,
 we need some jargon. For the matrix
 A
 a a a
 a a a
 a a a
 n
 n
 p p pn


