Evaluate the following integrals SolutionI integral of x16x
Solution
I = integral of x[(16x^2-9) + x/(9-16x^2)]dx
 I = integral of [x(16x^2-9) + x^2/(9-16x^2)]dx
 lets separate both integrals as
 I = I1 + I2
 now solve them individually
 I1 = integral of [x(16x^2-9)]dx
 let 16x^2-9 = t
 32xdx = dt
 xdx= dt/32
 I1 = 1/32 t dt
 integrating
 I1 = 1/32 * 2/3 t^3/2
 I1 = 1/48* (16x^2-9)^3/2
 apply limit from 3/4 to 32/4
 I1 = 1/48 [(16*18/16 - 9)^3/2 - (16*9/16 - 9)^3/2]
 I1 = 1/48[27]
 I1 = 9/16.......(1)
 I2 = x^2/(9-16x^2)dx
 I2 = 1/16 * 16x^2/(9-16x^2)
 I2 = 1/16 * (16x^2-9+9)/(9-16x^2)
 I2 = 1/16 * [-(9-16x^2) + 9/(9-16x^2)]dx
 I2 = 1/16*4[-(9/16-x^2) + 9/(9/16-x^2)]dx
 I2 = 1/4[-(9/16-x^2) + 9/(9/16-x^2)]dx
 integrating wrt x
 I2 = 1/4 [-x/2(9/16-x^2) - 9/32sin-1(4x/3) + 9sin-1(4x/3)]
 apply limits
 I2 = 1/4[-9/32sin-1(2) + 9sin-1(2) + 9/32/2 - 9/2]
 I2 = 1/4[279/32sin-1(2) - 279/32*/2]
 I = I1 + I2
 I = 9/16 + 1/4[279/32sin-1(2) - 279/32*/2]
![Evaluate the following integrals. SolutionI = integral of x[(16x^2-9) + x/(9-16x^2)]dx I = integral of [x(16x^2-9) + x^2/(9-16x^2)]dx lets separate both integr  Evaluate the following integrals. SolutionI = integral of x[(16x^2-9) + x/(9-16x^2)]dx I = integral of [x(16x^2-9) + x^2/(9-16x^2)]dx lets separate both integr](/WebImages/39/evaluate-the-following-integrals-solutioni-integral-of-x16x-1120994-1761596554-0.webp)
