For this set of x y data points use WolframalphaMathematica

For this set of (x, y) data points use Wolframalpha/Mathematica to find the line of best fit, in the form: y = m x + b WolframAlpha Command: linear fit {(1.0, -4.1), (6.0, 7.9), (8.0, 12.7)} y = -2.4 x - 6.5 0 y= 6.5 x - 2.4 y= 2.4 x - 6.5 y = 2.4 x + 6.5

Solution

Given data:

x

y

1

-4.1

6

7.9

8

12.7

To find the line of best fit of the form y = mx + b

We have used Excel data analysis tool

The Regression analysis results are shown below:

SUMMARY OUTPUT

Regression Statistics

Multiple R

1

R Square

1

Adjusted R Square

1

Standard Error

3.4093E-16

Observations

3

ANOVA

df

SS

MS

F

Significance F

Regression

1

149.76

149.76

1.29E+33

1.77357E-17

Residual

1

1.16233E-31

1.16E-31

Total

2

149.76

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

-6.5

3.87953E-16

-1.68E+16

3.8E-17

-6.5

-6.5

-6.5

-6.5

X Variable 1

2.4

6.68619E-17

3.59E+16

1.77E-17

2.4

2.4

2.4

2.4

RESIDUAL OUTPUT

Observation

Predicted Y

Residuals

1

-4.1

0

2

7.9

8.88178E-16

3

12.7

0

Therefore, the line of best fit is y = 2.4x - 6.5 (Answer)

x

y

1

-4.1

6

7.9

8

12.7

 For this set of (x, y) data points use Wolframalpha/Mathematica to find the line of best fit, in the form: y = m x + b WolframAlpha Command: linear fit {(1.0,
 For this set of (x, y) data points use Wolframalpha/Mathematica to find the line of best fit, in the form: y = m x + b WolframAlpha Command: linear fit {(1.0,
 For this set of (x, y) data points use Wolframalpha/Mathematica to find the line of best fit, in the form: y = m x + b WolframAlpha Command: linear fit {(1.0,

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site