Derive the intimation scheme for the system f1 x1 x2 x1 xy
Solution
Solution: sir your question image is verry blurred please again not seeing like this
first eq. is f1(x1,x2)=(x1-3)^2+x22 -6=0 ...........1) & f2(x1,x2)=x12 +(x2-4)^2-12............2)
from first eq. (x1-3)^2+x22 -6=0
x2 =(6-(x1-3)^2)^1/2=f1(x1)
when f1(x1) =0 then x1=3+6^1/2 or3-6^1/2
from second eq. f2(x1,x2)=x12 +(x2-4)^2-12 =0
x1=(12-(x2-4)^2)^1/2=f2(x2)
when f2(x2) =0 then x2=4+2(3)^1/2 or 4-2(3)^1/2
the vlue of x1 & x2 putting in eq. 1) & 2)
we get the value of function
the no. of value of x1 & x2 is 4 therefore four value of f1 and four value of f2
x1=3+6^1/2 & x2=4+2(3)^1/2 then f1(x1,x2)=54.74 & f2(x1,x2)=29.59
x1=3+6^1/2 & x2=4-2(3)^1/2 then f1(x1,x2)=.37 & f2(x1,x2)=29.59
x1=3-6^1/2 & x2=4+2(3)^1/2 then f1(x1,x2)=54.74 & f2(x1,x2)=.313
x1=3-6^1/2 & x2=4-2(3)^1/2 then f1(x1,x2)=.37 & f2(x1,x2)=.3131

