i Let A be a 3 times 3 matrix with determinant 15 Then detad
     (i) Let A be a 3 times 3 matrix with determinant -15. Then det(adj(A^T)) = -15, det(adj(A^-1) = -1/15  and det(adj(7A) =  (ii) Let A be a 2 times 2 matrix such that  adj(A) = [1 5  2 -7]  Then det A =   
  
  Solution
1.
Det(A) = -15
det(adj(A^T)) = -15
we know that
det(adj(A)) = det(A)^(n-1)
det(kA) = k^n*det A
here n = 3
det(adj A) = det(A)^2 = -15^2 = 225
det (adj(7A)) = 7^3*det(adj(A)) = 7^3*225 = 77175
B.
det(adj(A)) = det(A)^(n-1)
here n = 2
det(adj(A)) = det(A)^(2-1)
det(adj(A)) = det(A)
det(A) = -7*1 - 5*2 = -17

